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We develop a concise method to compute the corrections to the master 
equation for chemically reacting systems in particle number space that arise if 
the system is not a well-stirred tank reactor, but the transport occurs by dif- 
fusion. Starting from the master equation in the R u space of all reactant particle 
positions, we expand in inverse powers of the diffusion constant and eliminate 
all transport modes adiabatically. It is found that the overall effect of spatially 
nonuniform fluctuations cannot be treated as a mere renormalization of the 
reaction rate constants. From second order on there appear correction terms 
with a new structure that corresponds formally to additional virtual reaction 
paths. An intuitive interpretation along this line is impeded, however, by the for- 
mal occurrence of negative reaction rate constants in these terms, i.e., the reac- 
tion rate may depend on the concentrations of the final products of the virtual 
reaction rather than on the ingoing products. We also identify Avogadro's con- 
stant as the suitable f2 parameter and extend van Kampen's D-expansion 
systematically, to spatially continuous systems. This secondary expansion then 
serves to interpret the corrections to the rate equation, and the average and 
autocorrelation of the density in the stationary state. It is seen that the limits 
D --, oe and t2 --, oe do not commute. The relevant length and time scales are 
discussed. 

KEY WORDS: Diffusion reaction systems; fluctuations; adiabatic 
elimination; coarse graining; virtual chemical reactions; s 
hydrodynamic limit. 

1. I N T R O D U C T I O N  

Dif fus ion  r e a c t i o n  s y s t e m s  a re  a p a r t i c u l a r l y  we l l - su i t ed  p a r a d i g m  for  the  

s t u d y  o f  f l u c t u a t i o n s  o u t s i d e  t h e r m a l  e q u i l i b r i u m .  T h e r e  are  n o  f l u c t u a t i o n -  
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dissipation theorems available then and all information about the fluc- 
tuations must be derived from a somewhat microscopic description of the 
system. The advantage of diffusion reaction systems is that they allow a 
rather tractable mesoscopic description that is inherently irreversible and 
stochastic like the Boltzmann equation and still retains all correlations of 
the reactant particle positions similar to the Liouville equation. 

We consider reactant molecules ("reactants") that are suspended in a 
fluid medium at rest in which they perform Brownian motion. Our time 
scale of interest is much slower than the decay of all fluid-fluid and 
reactant-fluid correlations. On our time scale the medium serves only as an 
ether in which the reactants diffuse. The repeated randomness assumption 
is made only for collisions with medium particles, so the model equations 
are irreversible and stochastic. On the contrary, we do not impose the 
repeated randomness for reactant-reactant collisions, but treat the reac- 
tants on the N-body level. This mesoscopic description (between 
microscopic and macroscopic) allows the study of diffusion-controlled reac- 
tions and of the limitations of the "local equilibrium" concept, which does 
not apply in the presence of such reactions. 

In this paper, we solve the fundamental problem of coarse graining by 
the systematic adiabatic elimination (1) of transport modes and take account 
of all spatially nonuniform fluctuations. We consider the reaction scheme 

M ~ X ( la)  

X + X ~ M '  ( lb)  

Both reactions are considered irreversible and the concentration of M is 
assumed to remain constant without fluctuations, while M' is continuously 
drained from the system. The only variable quantity of interest is the den- 
sity p of X. 

If the system is well stirred so that it is kept uniform for all times, p is 
the same throughout the system and obeys macroscopically the reaction 
rate law 2 

~,p = b - ap 2 (2) 

The fluctuations are then also uniform in space and all information about 
them can be derived together with (2) by van Kampen's s (z) of 
the master equation for the uniform system: 

~ , P ( N , t ) = - - b V ( ~ - '  1 ) P ( N ' t ) + a - ~ ( E 2 - 1 ) ( N )  - (3a) 

2 By density we mean the mass density, i.e., total mass of X reactants divided by the volume of 
the system. The number density can be computed from macroscopic measurable quantities 
only by the use of Avogadro's constant and is therefore conceptually not a macroscopic 
quantity. 
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In this equation 3 P(N, t) is the probability that at time t the system con- 
tains exactly N reactants of sort II. Here V denotes the volume of the 
system, m is the mass of one X molecule, and the step operator [E is defined 
by Ef(N)=f(N+ 1) for any function f(N). The f2 parameter is usually 
identified with the volume V, so that the D-expansion becomes more 
specifically a system-size expansion. The density p in (2) emerges from this 
a s  

(N)m 
p =  lim (3b) 

V~oG g 

If the system is not well stirred, but the transport in the system occurs by 
diffusion, Eq. (2) is readily generalized. One defines a local density p(r, t) 
which changes locally due to the reaction process according to (2), and 
simply adds the remaining part of the change in p(r, t) that is due to dif- 
fusion: 

~?,p(r, t) = DArp(r, t) -- apZ(r, t) + b (4) 

Similar to the Navier-Stokes equations, Eq. (4) can be derived from a 
more microscopic description on the N-body level if one neglects all 
correlations between particle positions. (31 We will therefore refer to Eq. (4) 
as the hydrodynamic equation for the diffusion reaction system. This 
approximation can be made systematically (4) and is valid if the bimolecular 
reaction step is not in the least diffusion-controlled, i.e., if every X particle 
meets many others by diffusion before it reacts eventually. However, unlike 
the well-stirred case, in this derivation the density p does not emerge as a 
limit of the average of a fluctuating quantity, but as the probability density 
to find X at position r and time t. Therefore, the treatment of the fluc- 
tuations is not a simple generalization of the expansion in inverse powers 
of the system size V that one makes for (2). 

In order to improve on both, (3) and (4) without descending to the N- 
body level, one would like to include selectively the relatively small and 
slow long-range fluctuations in the description and avoid the relatively 
large and fast short-range fluctuations that occur on the length scale of the 
distance between nearest neighbor reactants, i.e. one would like to use a 
coarse-grained description. How such a reduced description can be derived 
from the description on the N-body level is the subject of this paper. For 

3 We use here the more appealing product  N(N--1)/2 in the bimoiecular reaction term, 
al though there s no experimental evidence against using N2/2. The difference does not  show 
in the leading order of the fluctuations and the next order effects have not  yet been observed 
in real chemical systems. 
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simplicity, we take the length scale of our coarse graining to be equal to the 
size of the system, so that the reduction of the description amounts to the 
systematic adiabatic elimination (1) of all transport modes. All spatially non- 
uniform fluctuations are accounted for, although they do not appear 
explicitly in the reduced description. 

The common description of the spatially nonuniform fluctuations 
starts from a coarse grained description that is obtained in an unsystematic 
way: the system volume is divided into cubic cells of size l a (d is the dimen- 
sionality), and the master equation (3) is postulated for the change in the 
number of particles in each cell. (5 s) Diffusion effects are taken into account 
by a probability rate for jumps of particles from each cell to the adjacent 
cells. In the following, we explain briefly why this approach is not satisfac- 
tory and how the problems are to be resolved. 

The cellular description for our particular system with the reactions 
( l a ) - ( l b )  is the multivariate master equation 

0,P({Nr}, t)~-Ol-2~ 2 ( ~ r - + l  Ar [~r - 1)NrP({Nr},  t) 
r A r  

r 

bU 
§ - - ~  ( E ; ' -  1) P({Nr}, t) (5) 

m 
r 

N r is the number of X reactants inside a d-dimensional cubic cell with 
volume l d that is centered at r. The summation index Ar points in turn from 
one cell center to each of the 2d nearest neighbor cell centers, so IArl = L 
The Er denotes the step operator with respect to N~, so that for any 
function f 

E , f (  .... N ..... ) = f (  .... N~+ 1,...) (6) 

Furthermore, periodic boundary conditions are assumed, so that the 
system as a whole is a d-dimensional torus. The jump rates depend the lat- 
tice constant l, so that: (a) when viewed on a length scale much larger than 
l, the random walk of the reactants between the cells, which is described by 
the first line of the right-hand side of Eq. (5), appears as a diffusion process 
with diffusion constant D, and (b) if the cells are so large that they contain 
many reactants (N~ > 1), the constants a and b are the reaction rate con- 
stants that appear in the phenomenological macroscopic reation rate law 
(2) for each cell. 

Technically, the solution of (5) appears to be just more difficult than 
solving (3a) (in general, any master equation that describes bimolecular 
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reactions cannot be solved in closed form(2/). Physically, however, (5) is 
problematic, because the coefficients a and b are usually only 
approximately defined, namely up to their leading order in s ~/2, which 
appears in the rate equation (2). For the master equation in number space 
(3a), the only consequence of the indefinite higher orders of a and b is that 
only the lower orders of van Kampen's Q-expansion are physically 
relevant. The dilemma of all cellular models like (5) is that the above men- 
tioned requirement (a) for the jump rates in (5) fixes D only asymptotically 
for small l, i.e., up to relative order (lml/Jpjl/d) 1/2, while (b) fixes a and b 
only asymptotically for large l, i.e., up to relative order (lml/~p,L/a) -d/2, 
where m~/Jp., ~/~ is a mesoscopic characteristic length in the problem, e.g., 
p.~./m is the average number density of reactants in the stationary state of a 
well-stirred system. 

The common remark (51 is that one should use an intermediate value 
for l which is large enough so that each cell contains many particles and 
still small enough so that diffusion is truly modeled on a macroscopic scale. 
This amounts to a coarse graining of the actual microscopic distribution of 
X mass so that all reactants in a same cell overlap. However, in common 
chemical reactions, a reactant does not have many possible reaction 
partners available at the same time with which it has equal probability to 
react. Mostly, paired reactants undergoing a reactive collision are each 
other's nearest neighbor at that moment. So there is no overlap range of 
intermediate values for l where one can use (5) and also truly describe dif- 
fusion of the individual reactants on the relevant length scale, which is 
given by the average distance between nearest neighbor reactants. 

An excuse for the spatially discrete description is (6) that there is a 
minimal length scale below which the one-particle diffusion equation is not 
valid. The diffusion equation approximates the actual Brownian motion of 
the reactants no better than a random walk with steps of that length. This 
length is the velocity persistence length (9t of the Brownian particle and it is 
determined by the reactant fluid interaction and not related to the next 
nearest neighbor distance among reactants. The correct description on this 
more microscopic length scale is the many-particle Kramers equation, (l~ 
which is much more complicated than (5). We assume here that the 
velocity persistence length for the reactants is much smaller than the typical 
nearest neighbor distance between them. The many-particle Kramers 
equation then reduces to the many-particle diffusion equation, and correc- 
tions due to the physically imperfect approximation of the one-reactant 
motion can be absorbed into the parameters that describe the reactant-  
reactant pair interaction. (11 ) 

We use the simple one-particle diffusion equation as a model for the 
Brownian motion transport and take it seriously on al length scales. This 
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means that we take the limit l ~  0 in the diffusion term of (5). The remain- 
ing problem is to describe on a mesoscopic scale the reaction interaction 
between pairs of reactants. 

The l ~ 0  limit of the reaction terms in (2) cannot be used for a 
mesoscopic description of the reaction interaction. This is most evident for 
d >  1, because then in the limit l ~ 0 the bimolecular reaction term predicts 
no reaction at all. In this limit, the reactants are point particles and as such 
have zero probability to meet by diffusion. The true reaction term then 
contains contributions proportional to 1/(l-lo),  where lo is a microscopic 
length like the diameter of the reactant particles. This 'contribution is not 
detectable for macroscopic cells, but diverges well before l ~  0. 

In order to be definite on a mesoscopic length scale, we present in Sec- 
tion 2 a plausible picture of the reaction mechanism and thereby fix the 
form of the reaction term. Also, we specialize to a one-dimensional system 
in order to keep the notation simple. The adiabatic elmination scheme for 
our case is explained in Section 3. In Section 4 we present the explicit form 
of the correction terms up to order lID 2 that arise because the partial 
equilibrium with respect to diffusion is only incompletely attained between 
successive reaction events and the repeated randomness assumption for the 
particle positions inherent in (3) holds only approximately. The corrections 
can be interpreted most easily by the ~2-expansion, and in Section 5 we 
show how to include them into this secondary expansion. In Section 6 we 
discuss the correction of order lID and remark on the applicability of other 
fluctuation treatments to diffusion reaction systems. In Section 7 we explain 
the additional features that appear in the corrections of order 1/D 2 and 
higher. We isolate the dominant macroscopic effects of these corrections 
and show the limitations of the Q-expansion of these corrections. We 
remark in Section 8 on the changes that appear if our treatment is applied 
to higher dimensions. Finally, we summarize our findings in Section 9 and 
compare our treatment to other expansions that are used in the kinetic 
theory of fluids. 

2. A PLAUSIBLE M I C R O S C O P I C  DESCRIPTION IN A 
C O N V E N I E N T  FORM 

Our formalism does not depend on the dimensionality; therefore, we 
consider explicitly only the one-dimensional version of the problem and 
defer our remarks on higher dimensions to Section 8. 

A number N of point reactants X diffuse on a ring of length 2L. Any 
pair of reactants at a distance r apart has a probability rate A(r) to react. 
After a reaction event has taken place, the reaction product is no longer 
accounted for. Also, for every infinitesimal ring element dr there is the 
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probability rate B dr for the spontaneous creation of a new reactant. The 
master equation for this system reads 

OrPN(R,,..., R~v.; t)=D~AR, PN- ~. A(R, -Rj )Pu  
i l<~i<j<~N 

+ 5 f d R N + , l  f dRN+2 A(R~+ 1 -- R~_2tPN+2 - ~N f dry,+1 e 

~- ~ ~ P N  l ( e l  ..... ~ i  ..... R N ;  t) (7) 
l <~i~N 

where the normalization of the functions P is given by 

1 

N = 0 

(8) 

All integrations are extended over the whole system. This equation can be 
obtained as the l ~  0 limit of (5) if one allows for a reaction probability 
rate A ( R -  R') for any pair of particles that reside in the cells centered at R 
and R', respectively. Also, the independent variables have been changed 
from the occupation numbers Nr to the positions RI, . . . ,R N of those cells 
that are occupied. The particles bear no labels in this description, so 
PN(RI,..., RN; t) is always symmetric in all its position variables, and the 
inverse factorial in (6) corrects for the multiple counting. Apart from dif- 
fusion, the probability that there are exactly N particles in the system at 
positions RI,..., RN changes through reactions: 

1. There is a decrease because the particles at any two of these 
positions can react and also because an additional particle can be 
created at any additional position RN+ 1 . 

2. There is an increase because there may have been two more par- 
ticles at positions RN+ 1 and RN+ 2 that have just reacted. Also 
there may have been particles at all N but one positions, namely at 
R1 ..... ~i,..., RN, and there has been a particle created at Ri. 

It is convenient to introduce the generating functional G for the 
functions P N" 

1 

N = 1 (9a) 

G ( { x ( r ) } ,  [ ) t : c ( r ) ~  1 = 1 ( 9 b )  
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and 

PN(RI ..... RN; t)= (~x(Rl)'''~x(RN)G({x(r)}; t)]x(r)_= 0 (9c) 

where c~ stands for functional derivations. 
For  systems in the thermodynamic limit ( L ~ o o ,  ( N ) - - * o %  

(N) /L  = const.) it is more common to use the functional derivatives: 

fN(R, ..... RN; t)=6xIR,)'''C~x(RN)G({x(r)}; t)lx(r/=, (9d) 

The functions fN are multiple point densities, i.e., f2(R1, R2, t) is the 
probability density to find two reactants at positions R1 and R 2 at time t, 
regardless of all other reactants in the system. We will not use these 
derivatives explicitly in the following nor will we take the thermodynamic 
limit, but for our discussions it is helpful to notice that the functions fN 
factor like fN = (f l )  N if the reactant positions are uncorrelated and if the 
probability distribution for their number is of the Poisson type. So all 
information about correlations between reactant positions is contained in 
the space dependence of the function f2 and higher ones. Notice also, that 
the functions fN are not normalized in any way. 

In terms of G, the master equation (7) reads 

a,a({x(r)}, O=D i drx(r)  r6xO a 

1 

+5 dr f dr' A(r - r ')[1 - x(r) x(r ' ) ]  (~x(r)(~ x(r,)G 

+ B dr[-x(r)- l]G (lo) 

Furthermore, it is convenient to Fourier transform with respect to r: 

1 
2(k) =~-s t dr e-ikrx(r) ( l l a )  

x(r) = y '  2(k)e i*~ (1 lb) 
k 

x(r) = ~ ~ e-ikr ~ 2(k) (11c) 

k assumes all discrete values, so that kL/Tr is integer. For  real x(r), 2(k)= 
2(-k) ,  but 2(k) and 2 ( - k )  are treated as independent variables. 
Equation (10) then takes the form 
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0,G({2(k)}, t ) =  - D Y, k22(k) (?~(~)G 
k 

1 
+ ~ ~ A(k~)E6(k2) (5(k3) - 2(k2) 2(k3)] 

kl,k2,k3,k4,k5 

x 5(kl +k2 - k 4 )  6(kl - k 3  +ks )  O.e(k,)63r 

+ 2LB[2(O)- 1]G (12) 

w h e r e S ( k ) = l  i f k = 0 ,  a n d 0 i f k r  
Readers familiar with the expansion in the inverse system size might 

expect a (2L) I dependence in the k 1 = 0 term in the second line of (12). It 
is hidden, in that for a given choice of A(r), A(k)~ (2L) 1. The L-depen- 
dence for a sum over a given range of k-values is different, however, 
because the spacing of the allowed k-values depends on L. 

3. T H E  A D I A B A T I C  E L I M I N A T I O N  S C H E M E  

The concept of partial equilibrium leads to good approximations if the 
fast variables in the problem belong to the first category in van Kampen's 
classification (1/ (see also Ref. 12), i.e., if the time development operator H, 
in the dynamic equation for G 

~,G=HG (13) 

can be split into a dominating part ( l /e)T with eigenvalues that are either 
zero or have comparatively large negative real parts (in our case the trans- 
port operator) and a complementary part R with eigenvalues that are com- 
paratively small in modulus (in our case the reaction operator): 

1 
H = - T + R  (14) 

8 

Starting from an arbitrary intial condition, the system then first goes 
through a transient regime during which the fast part of G, called FG, 
decays. F is the projection operator on the nonzero subspace of ( I / 8 )T .  4 
The remaining slow part of G, called SG, lies entirely in the subspace of 
(1/e)T and then develops more slowly in time, being governed mainly by 
R. The adiabatic elimination scheme is the systematic extraction of the 
reduced dynamic equation for SG for the time after the transient from the 
full equation (13). 

4 In general, F projects on the left nonzero subspace, Iz) but here the projectors on the left and 
right nonzero subspaces are identical. 
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The complementary pair of projection operators S and F are uniquely 
defined s for any given choice of how to split H: 

S G =  lim er'G (15a) 
t~oo  

S + F = I ,  S ' S = S ,  F ' F = F  (15b) 

Equation (15a) is a defining recipe for the preparation of partial 
equilibrium: halt all slow processes (small eigenvalues) in the system and 
let all fast processes proceed until they have come to their long-time limit 
halt. Of course, the partial equilibrium concept applies only if the fast 
processes do lead to a stationary long-time limit so that the limit in (15a) 
exists. 

The classification into fast and slow processes may seem as arbitrary 
as the selection of fast and slow variables in the Mori-Zwanzig scheme. 
However, it amounts to a certain scaling of the parameters in the operator 
H with the dimensionless parameter ~, and from this scaling we will 
read off the regime where the chosen partial equilibrium is a good 
approximation (see end of Section 7). 

Once we have identified the projection operators S and G, we are free 
to choose the basis in the argument space of G. It is most convenient to 
choose the independent variables x so that T is block-diagonal(12); the 
variables x can then be grouped in x, and Xr (according to whether 6xG 
changes slowly or quickly during the transient), so that 

SG(x~, Xr; t) = G(xs, 0; t) (16) 

The independent variables in (12) have already been chosen accordingly. 
In our case, the fast process is diffusion, so that ( l /e)T is the transport 

operator in the first line of (12): 

1 
- TG({2(k)} ,  t))=- c3~1~ = o G({2(k)  exp(-Dk2z)},  t) (17) 
8 

There are two possible reasons that lead to large eigenvalues for the 
operator ( l /e)T and they correspond to two different scalings: 

1. Either the system is small and one scales L = ~1/2/~, D =/3, where 
the barred quantities are scale-invariant. The absolutely smallest 
nonzero eigenvalue of (1/e)T is then (1/e)~2//5 2. However, the 
system size enters in several other ways into the dynamic Eq. (13) 
and the transport operator T would not be singled out according 
to (14), but the reaction operator R would still depend on e. 

5 Equation (6.4.29) in Ref. 8. In general the limit in (15a) need not exist. See Ref. 1 for details. 
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2. Or the diffusion constant is large and one scales L = / 5 ,  
D = (l/e)/3. This is meant here. 

The difference between the two scalings shows that the elimination scheme 
is not a simple expansion in powers of the system size. We will keep the 
system size constant and finite throughout. 

The explicit form of SG follows from (17) and (15a): 

t)) = 6(k)} ,  t) (18) 

The common term "fast variables ''6 denotes those system variables that 
approach a limit during the transient regime. In our case, they are all par- 
tial derivatives (all orders) of G with respect to 2(k) ,  k r 0. The derivatives 
in first order are the fast variables that one would expect-from the 
hydrodynamic Eq. (4), namely the Fourier components of p for k r 0. The 
higher order derivatives of G with respect to 2(k),  k r 0 describe in par- 
ticular the correlations between reactant positions (see Eq. (9d)). These 
correlations decay by diffusion. 

The adiabatic elimination proceeds formally as follows: First write out 
the coupled equations for the slow and fast parts of G: 

OtSG = S R S G  + S R F G  (19a) 

c3,FG = _1 TFG + F R S G  + F R F G  (19b) 
8 

Eq. (19a) describes the dynamical behavior of the system as it appears in 
the slow subspace, in our case the number space: the first term on the 
right-hand side S R S G  is the same as the right-hand side of the master 
equation (3a) in number space for a well-stirred system. The second term 
comprises all the corrections to this that arise due to correlations between 
reactant positions. Eq. (19b) describes the dynamical behavior in the fact 
subspace of correlations between reactant positions: the first term on the 
right-hand side (l/e) TFG describes the fast decay of the correlations. The 
second term F R S G  represents the correlations that arise constantly by reac- 
tion e v e n t s ~ v e n  if the system starts to evolve from a well-stirred initial 
state SG. The third term F R F G  describes the modification of correlations 
between reactant positions that occur due to reactions. 

In the limit of infinitely fast diffusion e = 0. Following a reaction event, 
the system attains instantaneously the partial equilibrium with respect to 
diffusion. The first term on the right-hand side of (19b) ensures then that 

lim FG = 0 (20) 
~ 0  

6 First category in van Kampen's  classification. 
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for all times. The dynamics of the correlations as described by the other 
two terms is irrelevant in this limit, because the correlations decay instan- 
taneously and FG = 0. So the possible reaction partners for any one reac- 
tant are then distributed uniformly and the system behaves as if it is well- 
stirred, (6'8~ i.e., (19a) is then equivalent to (3a). 

If diffusion is not infinitely fast, it takes a time of order e for the part 
FGo of the full general initial condition G({2(k ) } ,O)=Go({2 (k ) } )  to 
decay. During this transient, FG couples to SG via the last term in (19a). 
So the long-time dynamics of SG does not only depend on SGo but also 
from order g on FGo. In the following, we only show how to extract the 
reduced description for the dynamics of SG after the transient. We do not 
discuss the effective initial condition SGeff for SG to which this reduced 
description extrapolates back at time t = 0. In order to obtain SGef f from 
Go, one would have to solve the full initial value problem for (13). 

The computation of higher orders in e relies on the fact that (19b) 
couples different orders of FG in e, so (19a) and (19b) together constitute a 
recursion relation that allows one to determine successively higher orders 
in ~ of the reduced dynamic equation for the partial equilibrium dis- 
tribution SG in terms of the lower orders. The order linking step in the 
recursion is 

F G + O ( e n + ' ) = e T - ~ [ - F R S G + ( ~ ? , - F R ) F G + O ( e n ) ]  (21) 

where T 1 operates only on functions that lie entirely in the nonzero sub- 
space of T. The first explicit steps of the scheme are as follows: 

In first order in ~ one deduces from (19b) and (20) 

FG = - e T  ~FRSG + O(e 2) (22) 

This is substituted in (19a) and in first order in ~ the system behaves on the 
slow time scale according to 

O,SG = SRSG - eSRT  ~FRSG + O(e 2) (23) 

To obtain the second-order approximation, one uses (19b), now together 
with (22) instead of (20), to get 

F G = - e T  1FRSG+e2(T 1 F R F T - I F R S G - - T  aFRSRSG)+O(e  3) (24) 

This is then substituted into (19a): 

~tSG = SRG - eSRT  1FRSG 

+ e 2 S R ( T - F R ) 2 S G -  e2SRT-2FRSRSG + O(e 3) (25) 
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This scheme can be persued ad infinitum and the resulting exact dynamic 
equation for SG is of the form 

OtSG=SR ~ e~K~SG (26) 
n = O  

We do not explicitly use any higher order than second in e. The general 
recursion relation for the operators K~ was already derived by Bloch(13): 

K,,= - ~" Kv + eT 1 ~ -FRKv + ~ Kv_~SRK~ 
v = 2  ; ' =  1 p = O  

(27) 

with K o= 1. Note that through the # = 0  term in (27) there enters the 
general term 

e,,SRT-nFRS(SRS)n-1 (27a) 

into the dynamic Eq. (26) at order e". We will come back to this term later 
in connection with the (2 expansion at the end of Section 7 and in the con- 
cluding remarks of Section 9. 

4. T H E  EXPL IC IT  C O R R E C T I O N  T E R M S  

The explicit form for the zeroth order in ~ for (19a) is 

SRKoSG=�89 -22(0)]  a~(o)SG+2LB[2(O)--1] SG (28) 

It is intuitivly clear that in this order only the integral of A(r) is relevant, 
since in this order no correlations between particle positions are taken into 
account. Comparison of (28) with (3) shows that 

m V 
lira a A(0) and lira b - - =  2LB (29) 
~ 0  -V=- ~ 0  m 

The major computational difficulty in obtaining higher orders in e is to 
invert the dominating part (l/e)T of the full operator H. In our case, this is 
easy with the help of (17): 

eT ~FG({2k}, t )=  dz [G({2(k)exp(-DkZz)}, t)-G({2(0)cS(k)}, t)] 

(30) 

This expression shows that the functional T-1FG differs from FG in that its 
dependence on 2(k) for high k is damped. In accordance with this, the 
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excitations of the fast modes from diffusive equilibrium are least important 
in the correction terms. These correlations diffuse away most rapidly. More 
details are given in Ref. 14. 

The basic explicit structure of the correction terms of order ~n in (20), 
namely SRK, SG, can be seen in our problem from the terms up to second 
order: 

SRKI SG = - eSRT IFRSG 

1 
0~(o) = _  ~ ~-][~dZ(k)[1-22(O)] : 

k~O 

SRK2SG = ezSR(T 1FRT-1FR- T-2FRSR) SG 

SG (31) 

1 
= ~ Y, 8D2k2k~d(k,)A(k~+k2)d(k2)[ 1-22(0)] 82(o)SG 

klva0 k2~0 

D2  - -  a4(o)[- 1 2 2 ( 0 ) ]  - - ~ 8  k4A2(k)2 A(O)[1 2 2 ( 0 ) ] 2  - 8,(0)S G 2  
kvaO 

-- ~ 81~k4ja(k)'2LB[1-22(O)] 632(0)[2(0)-1] SG (32) 
k r  

where we have assumed for simplicity that A(r) is symmetric and real, i.e., 
A(k) = f t ( -  k). 

Before we can study the correction terms (31) and (32) in detail in 
Sections 6 and 7, we first have to discuss the application of van Kampen's 
~2-expansion to diffusion-reaction systems. 

5. T H E  Q - E X P A N S I O N  FOR D I F F U S I O N  R E A C T I O N  S Y S T E M S  

We start by stating the obvious. The fluctuating deviations from the 
hydrodynamic equations that govern our macroscopic world are number 
fluctuations. They are small by everyday measures because Avogadro's 
number NA is large, and if we imagined a different world which is 
macroscopically identical to ours but with a much larger numerical value 
of NA, the hydrodynamic equations would be the same, only the fluc- 
tuations would be scaled down. In the limit NA ~ oo the fluctuations would 
disappear altogether, because all matter would then be truely continuous 
and not chunked into molecules. This property of the parameter NA meets 
precisely the requirements (2) for the (2 parameter. The f2-expansion is the 
expansion of the master equation around the limit (2 ~ oo. It serves to 
derive systematically the hydrodynamic equations and all statistical infor- 
mation about the fluctuations. 
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For reaction systems with no spatial correlations between reactants, 
e.g., in the limit D ~ oo of a diffusion reaction system, f~ can also be chosen 
as the scaling parameter of the volume of the system, so that the ~-expan- 
sion becomes more specifically a system-size expansion. This interpretation 
is usually preferred because the system size is easily varied both in 
experiment and thought, while NA is a constant in nature. However, it is 
evident from the volume dependence of (29) that the system-size expansion 
is not possible if the diffusion constant is finite. 7 The terms in (31) diverge 
in the limit of infinite system-size(6): the two derivative operators with 
respect to 2(0) give two extensive factors, namely, the total number of par- 
ticles in the system. This is compensated because A ( k ) - ( 2 L )  1 for any 
reasonable A(r), e.g., A(r) = 20(a - ]r] ), - L  < r < L. Finally, both inverse 
factors k contribute one factor L because during the summation k.L/~ 
assumes all integers (which do not depend on L). In comparison to (28), 
which is of first order in the system-size, (31) is of second order; higher 
order terms in the expansion (26) are of increasingly higher order in L, 
and, without regard to the dimension of the system, the common expansion 
in inverse powers of the system-size cannot be carried out on the higher 
order terms in (26) (6> . This is because the decay time for the slowest trans- 
port mode is large for large systems, while we assumed it to be small in our 
primary expansion, namely the adiabatic elimination scheme. We therefore 
turn back to the scaling of Avogadro's number instead of the system size 
and keep the decay time for the slowest mode constant. 

First, we need the correct scaling of the parameters in (10). Both the 
system size 2L and the diffusion constant D can be measured 
macroscopically, e.g., D can be measured via the decay time of the slowest 
transport mode in the limit of low concentration, so that all interactions 
between reactants can be neglected. D is a macroscopic parameter that 
describes the transport of single reactants in the medium. So the 
parameters D and L are scale independent. (8> 

The parameter B = b/rn measures a number rate density that cannot be 
measured macroscopically, in contrast to the mass rate density b. We scale, 
therefore, 

m=rhf2 1, B=f2b/rh (33) 

where rh is a macroscopic mass, such as the mass of 1 mole of reactant sub- 
stance X, and rh does not depend on f2. All number fluctuations in the 

7 In higher dimensions the divergence for large system size occurs at higher order corrections 
of the adiabatic elimination scheme. 

s The diffusion constant  of particles in a fluid with a given viscosity does depend on the size of 
the particles. In order to keep the macroscopic appearance of our system independent of f2 
and isolate the effects of number  fluctuations in the number  of reactants in the system in a 
real experiment, one would have to adjust the viscosity to the size of the reactants. 

822/45/3-4 24 
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amount of X mass that is generated by the process (la) in a certain time 
interval disappear in the limit f2 ~ oo. 

The scaling of the coefficients A(k) for the bimolecular reaction term is 
more intricate, because the mesoscopic nature of the reaction remains to be 
fully specified in its f2 dependence. Only the scaling of A(0) is fixed by (29). 

In one dimension, a particularly simple specification of A(R) is 

A(R) ~ ,5(R) (34) 

However, we prefer to use a model A(R) with a somewhat extended sup- 
port, which can be generalized to higher dimensions. We also want to 
retain a realistic mesoscopic nature of the reactive interaction for large /2 
(and increasing number density). If we scaled all Fourier components A(k) 
like A(0), every particle would have a large number (of order f2) of 
possible reaction partners at any one time but, with each of them, only a 
very small chance to react. 

In order to keep the macroscopic features of the system constant on a 
macroscopic length scale and the mesoscopic nature of the processes con- 
stant on the mesoscopic length scale, we scale 

A(R) = A(R/l) (35) 

where l is a typical mesoscopic length and //(x) is a scale-invariant 9 
function. For l we specify the average nearest neighbor distance between 
reactants if their mass density equals the stationary value from the 
hydrodynamic equation and if they are distributed without spatial 
correlation: 

l=m/ps=f2-1T, ps= lira (b/a) 1/2 (36) 
D ~ o o  

]-is a macroscopic length related to the volume of 1 mole of substance X in 
a stationary system in the limit of infinitely fast diffusion. The function 
A(x) is a hydrodynamic parameter, which in principle can be measured 
macroscopically, e.g., via the dependence of the reaction rate on the dif- 
fusion constant, even though this may be experimentally difficult because 
A(x) still depends on the velocity persistence length, the temperature, the 

9 According to the periodic boundary conditions chosen, A(R) must be periodic with period 
2L in (10). Strictly, the function A(x) must not depend on the system size and therefore can- 
not be periodic. So the scaling (35) can apply only for - L < R < L .  Although this is 
obvious, the corresponding explicit notation is awkward and unnecessarily so because we are 
only interested in the case that the distance between reacting particles and also the distance 
between neighbor particles are much smaller than the system size. It is only to ease the 
notation that we extend A(x) periodically by A(x+2L/l)=A(x). All integrations are 
understood to be performed over one period. 
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volume fract ion of the reactants ,  etc.~~ In the l imit  D ~ ~ the reac t ion  ra te  
cons tan t  a is re la ted  to A(x )  by 

lim a = A o l / m = ~ o l / r ~  (37) 
D ~ c ~  

where A k is the F o u r i e r  t ransform of  the single centra l  peak  of  .4(x): 

One  easily verifies that  in the l imit  D ~ vo our  A v o g a d r o  scal ing 

m = s r~b, l = Q  1~ L = L  (38) 

is equivalent  to the system-size scal ing 

r e = m ,  l = T, L = t2E (39) 

(bo th  n5 a n d / 5  are sca le- invar iant  and  s is dimensionless) .  Equa t ion  (28) 
with the scaling made  explici t  reads  in bo th  cases 

S R K o S G  = �89163 1 - ~2(0)]  ~(o~SG + 2Et2b/m[ Yc(O ) - 1 ] SG 

(40) 

where a factor  ~2  is h idden in the second der ivat ive  02(o)SG because,  e.g., 

02(o)SG[.~(o) ~o = ( N ( N -  1 ) )  (41) 

and N scales l inear ly with Q. 
However ,  the equivalence between (36) and  (37) does not  hold  for the 

f i rs t -order  cor rec t ion  in l/D, Eq. (31). This cor rec t ion  diverges for t2 ~ 
in the system-size scal ing because  it follows f rom (31) that  

12 "2  
S R K 1 S B =  - ~ 8D~r2n 2 Akin)[1 - - ~ 2 ( 0 ) ]  042.?(0)SG (42) 

t1= I 

where 
k(n) = ( l~/L)n (43) 

1o Further examples of relevant macroscopically measurable quantities that we want to keep 
scale-invariant are the volume fraction of reactants, their mass concentration, and their 
specific weight. In particular, the limit f2 ~ ~ differs from the Grad limit that is used to 
derive the Boltzmann equation for hard spheres. There the total surface area of all spheres is 
kept constant and the volume fraction approaches zero. The total surface area of all reac- 
tants has no particular macroscopic interpretation in our case and its divergence in the limit 
(2 ~ ~ seems to be irrelevant. 
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For the system-size scaling (39), this is one order higher ~ in f2 than the 
recombination term in (40). In contrast, in our Avogador scaling (38) the 
correction becomes somewhat insignificant because it is one order lower in 
42 than (40). Before we proceed with the explicit f2-expansion, we remark 
that (40) and (42) together with (44) ameliorate the deficit of the master 
Eq. (3) mentioned in the introduction in connection with cell models. The 
coefficient of the recombination term is now specified up to relative order 
f2 -~ beyond the leading contribution by 

a = a(~ a(~f2 1 .31_ O(1/D 2, (2--2) (44) 

where 

a~~ dol/m (45) 
and 

a(1) = _ ~ F 2/-. -~2 
n = ~ 4D~2n2 r~" A k(n~ 

We summarize now the explicit substitutions of the ~2-expansion for 
our case. They are closely analogous to the detailed treatment in Ref. 2 of 
the case of infinitely fast diffusion. The independent variable N in (3) is 
changed to the scaled continuous variable ~ by 

N=(2E,/rh)[f2(a(t)+f2~/2~], P(N, t )=  H(~, t) (46) 

where the function ~b(t) will be defined presently. In particular, the step 
operators are represented by a Taylor expansion with respct to ~: 

( mO-1/2c3~)H(~,t) (47) F_P(N, t )=  exp 2/S 

The highest order in 42 that occurs in the resulting dynamic equation for H 
is (2 ~/a. All terms cancel in this order if ~b(t) obeys the equation 

(?,~b = b - a(~ 2 (48) 

This is the same equation as (2) in the limit f2 --, oo; moreover, all centered 
moments of H turn out to be of nonpositive order in f2, so ~b(t) gives the 
dominating contribution to the mass density for f2 ~ oo, as it is evident 
from (46). So the hydrodynamic limit f2 --) oo is not affected in first order 

11 Strictly, we also have to account for an ~ dependence of ~kln) because k(n)= s ITztn/f~. 
However, this scaling depends on the explicit form of the function A(x) and it is the same 
for both the system size and our Avogadro scaling. Any realistic ,4(x) is sharply peaked at 
x = 0  with a support much smaller than the interval [ - 1 ,  + 1]. So Ak differs appreciably 
from A0 only for k >  1 for n > L/l. These summands contribute very little to the sum in (42) 
because of the n 2 dependence in the denominator. However, this is a peculiarity of our one- 
dimensional system and in higher dimensions the convergence of the sum depends crucially 
on the limn~ c o  nd--2A2k(n)=0. 
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of lID. The same is true of the next order in s namely g2 ~ where H is 
found to obey the Fokker-Planck equation: 

1 
(b + 2a(~ 2) ~ O~H+ 2a (~  (49) a,H(r t) = 5 

The first-order effect of finitely fast diffusion is felt only from order 
s 1/2 of the dynamic equation for H. The notation is heavy at this level 
and to save writing, we change from the quantities ~, ~, and t to the 
following dimensionless ones 12. 

0 = (a(~ 

q = (m/2L)--1/2psl/2 ~ 
(50) 

~o = ( r~/2L ) l/2 p ~- i/2(2 1/2 

= (a~)/a~Ol ps(r~/2L ) 1 

Also, we restrict ourselves to the stationary macroscopic state, i.e., 
~(t) = (b/a~~ 1/2. 

The dynamic equation for H is then, up to second order in ~o, 
1 1 

~o H = ~ (1 + ~2)(e2~~ - l )(1 + c.0q)( I + ~ / -  ~2)H + ~ 2  (e ~ ,  - 1 ) H 

(51) 
The approximation solution is easiest to obtain in terms of the moments 
~17 ~) of H. The dynamic equations for them follow directly from (51): 

0 o ( ~ ) = ~ ( 1 - ~ ) +  - l+co  ~ - ~  ~ ) - ~ o , < ~ ) + 0 ( ~ o  ~) 

3 21 

+ [ - 2  + 2~o2(1 - ~)] {r/2) - ~o(~/3 ) + O(~o 3) 

0o{r/3) = - 5 o +  - co2(7- 3e) {q)  + 5  ~o(5- c~)(q2) (52) 

3 
- ~ o 2 ( 7 - 3 ~ ) + [ - 3 + 3 o f ( ~ - ~ ) ]  ~ r / 3 ) - 5 ~ r /  ~+O(o~ ~) 

9 m z - 6 ~ o { q )  + [ 9 + ~ o ~ ( - 2 2 + 6 e ) ] { q  2) +2~o(7-e){r /3)  

+ [ - 4  + 4 o ~ ( 2 -  ~)] (~/4~ - 2o~{q 5 ) + O(e~ 3) 

~2 The first three rescalings are closely analogous to Ref. 2, where this order in ~ is discussed 
for a system with slightly different reactions in the limit D ~ ~. Note that e in Ref. 2 is o~ 
here. 
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Fortunately, in the equation for every moment there occurs only one 
higher moment, namely the next higher one, and it carries a coefficient co. 
So in zeroth order in co one can solve for the subset of the first v con- 
secutive moments. Also, all moments approach a finite stationary value in 
time, and the convergence for co ~ 0 is uniform with respect to O. One can 
now substitute the zeroth order of the moments ( t / ) - - -  ( t /v) on the right- 
hand side of (52) as coefficients of co and solve the first v - 1 equations up 
to first order in co. After /~ iterations of this scheme one obtains 
( t / ) . . .  ( t / v - " )  up to ~tth order in co. 

We give only two quantities that result from this calculation: 

1. The average value of the fluctuation is 

(~ > = co(�89 - �89 + o(co 3) (53) 

2. The time-dependent autocorrelation function is 

( ~ ( ~ ) ~ ( r + O ) ) = ( ~ 2 ) 2 ( l _ e  -~o)+(~2) [ ( �88  e , o + ( ~ + 1 ~ )  e o] 

_ �89 _ e-2O) + O(co3, s (54) 

where 

(r/2) = �88 + �89 c0, 7 =  1 + co2(c~- �89 (55) 

6. D ISCUSSION OF THE F IRST-ORDER CORRECTION ~1 

If the master equation for a homogeneous (well-stirred) system like (3) 
is written in terms of the generating function, every reaction term is of the 
general form ~8) 

+ const x (Pou t -  Pin) ~?inG (56) 

Pi. and Pou, denote the products of the generating variables for the 
occupation numbers of the ingoing and outgoing substances of the reaction 
and ~in is the product of partial derivative operators with respect to the 
generating variables for the ingoing substances. An example for this is the 
notation (28) for the right-hand side of (3). 

The first-order correction term (31) contains two consecutive reaction 
operators. This resembles the virial expansion for an imperfect gas, where 
the first correction to the ideal gas limit arises from interactions between 
isolated pairs of particles. Here the first correction to the well-stirred limit 
arises from interdependence of isolated pairs of successive reaction ( lb)  
events. 

The functional dependence of (31) on )?(0) is the same as in the 
corresponding term of the zeroth order (28). This is because correlations 
between positions of pairs arise only from reactions in which there occur 
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more than one ingoing and one outgoing reactant. Also, only such reac- 
tions are sensitive to correlations that are at least bimolecular, e.g., the par- 
ticle creation (la) does not depend on correlations, nor does it give raise to 
any and the corresponding operator does not occur in (31). 

The minus sign of (31) shows that the reaction (lb) is slowed down. 
This contradicts what one would expect if one ignored the subtle concep- 
tual difference of p in (2) and (4). One could then reinterpret p(r, t) as a 
fluctuating quantity and supplement (4) with a stochastic "Langevin" term. 
In "Langevin" diction, one describes the distortion of the spatial uniformity 
of p due to a single reaction event by a space-dependent fluctuation ~p(r, t) 
that has zero average when averaged over the volume of the systemJ 8) The 
correction due to imperfect partial equilibrium when the next reaction 
event occurs is then 

and the reaction (lb) appears to be accelerated--contrary to our result 
(31). The flaw with this argument is that it uses two microscopically dif- 
ferent meanings for the macroscopically unique quantity "density." The 
quantity that obeys (4) even on the microscopic scale is a probability den- 
sity that does not fluctuate. Its Fourier components are fast variables that 
go to a limit in partial equilibrium. On the contrary, fluctuations do occur 
in the microscopic distribution of X mass in the system. On the 
macroscopic scale the Fourier components of both quantities coincide and 
on a somewhat smaller length scale where the fluctuations are still small, 
the linear regression hypothesis can be used. On our length scale of 
interest, where single reactants are resolved, the fluctuations of the 
microscopic mass distribution are not small and in particular a fluctuation 
expansion (14) would not make sense. 

The correct explanation for the minus sign in (31) is that in partial 
equilibrium (SG) the reactants are positioned independently from each 
other. This absence of correlations does not, of course, mean absence of 
fluctuations, i.e., at some places the reactants happen to be closer to each 
other than at other places. Starting from this partial equilibrium, a reaction 
(lb) event is most likely to occur between reactants that are close and 
thereafter the distribution of the remaining reactants RSG is more 
homogeneous in space than in the random partial equilibrium con- 
figuration. So the probability for a following reaction event is decreased. 
Obviously the contributions from small k values are particularly important 
because they decay least during the time between successive reaction 
events. This explains the factor T -1, namely ( - D k  2) 1, in (31). Also, those 
very high k values contribute little that correspond to wavelengths smaller 
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than the typical distance between reactants at the moment of reaction. 
Correlations on such a small length scale neither arise from a reaction 
event, nor do they change the probability for a successive one. This 
explains the factor A2(k) in (31). 

A better pendant to which one can compare our expansion is the 
cluster expansion for diffusion-controlled reactions. (3'4'14'15) In its lowest 
order (Smoluchowski-Noyes theory) beyond the neglect of all correlations 
one considers pairs of reactants. This corresponds to the fact that the 
functional RSG to the right of T -1 in (31) is of second order in 2(k). 
However, the higher orders of the cluster expansion--for which there exist 
no systematic results~iffer  from the higher orders in our scheme. 

In particular, the cluster expansion amounts to a Taylor expansion of 
the logarithm of the functional G for an infinite system around the point 
x(r)-  1 in function space: 

log G({x(r)}, t) 

~=1-~. drl""drn[x(rl)- l]"[x(rn)- l]gn(rl , . . . , rn,  t) (58) 

One then obtains from (10) a hierarchy of dynamical equations for the 
functions gn that describe correlation between clusters of n reactants. Suc- 
cessively higher functions gn turn out to be of successively higher order in 
A(r). Small values for A(r) mean that the reactant pair distribution is only 
little depleted for small mutual distances and that diffusion can destroy the 
arising pair correlations relatively fast. 

The cluster expansion agrees with the adiabatic elimination in that the 
first-order correction can be derived from the exact solution of the two- 
reactant problem, i.e., for the case that G contains no higher powers of 2(0) 
than second. The exact solution for a system with two particles is 
equivalent to the problem of finding a closed form for the right-hand side 
of (26) after one has dropped all higher derivatives than the second. This 
reproduces the first-order (31) correctly. Also, this solution amounts to the 
solution of the dynamic equation for g2 and neglecting g3. However, in the 
next order in the cluster expansion there appear three-particle correlations, 
while our scheme accounts for correlations between three reaction events, 
which turn out to contribute in fourth order in the number of reactants in 
the system. 

The expansions differ also in that the Smoluchowski-Noyes theory, in 
its customary form, deals with a system of infinite extent. It ignores the 
slow long-range fluctuations, whereas (31) ascribes a large effect to the 
smallest k-values that the system can accommodate. The reason for this 
relative shortcoming of the cluster expansion is twofold. When it is applied 
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to a time-dependent situation, it is common to consider the initial con- 
dition that the system is well-stirred and the reactant positions are com- 
pletely uncorrelated. The slow long-range fluctuations take a long time to 
develop and are small during the short-time regime, so that the cluster 
expansion adequately describes the situation. When it is applied to a 
system in the stationary state, the cluster expansion still ignores the 
correlations that arise from large clusters. The importance of these 
correlations for the approach to the stationary state is evident from the 
divergence of the higher order terms in (3.13) in the limit of infinite system- 
size. It is also evident that these higher order terms are of higher order in 
A(r), so they correspond to high orders in the cluster expansion. 

The correct application of the g2-expansion to our system shows that 
the hydrodynamic Eq. (2) is not affected in order el and neither are the 
fluctuations in the linear noise approximation. Fluctuation effects beyond 
this order in (2 1/2 are unmeasurably small in order e ~ In order e 1 we find 
the average mass density in the stationary state to be 

m ( 1 (1) f2-1"~ 1 m 
( p ) = - ~ - ~ ( N ) = p , , 1 - - ~ a  a ( o ) ) + ~ - ~ + O ( O  2, e2) (59) 

where 

lira a =  1 [ dr A(r) a ( O ) ~  

e ~ o  m d 

(f a(1)(2 1 - -  m (D/r2n 2)-~ dr A(r) cos - -  
2L n= 1 

Ps = (b/a(~ i/2 

The deviation from the hydrodynamic value p, amounts in order e ~ only to 
one-eighth of a single reactant molecule in the whole system. On the con- 
trary, it is not small for large systems in order e 1. For large L, the cosine in 
the expression for a(l)Q i can be safely replaced by unity because the con- 
vergence of the sum is ensured by the factor 1/n 2. With help of the identity 

~ n  = ~z2/6 (60) ~ 2 

n = l  

the relative deviation ( ( p ) -  p~)/p, is obtained for large L [much larger 
than the support of A(r)] as 

- �89 (I)Q l/a(~ = a(~ + O(L ~ (61) 

This shift of the average density from the hydrodynamic value p, is caused 
by correlations between reactant positions; however, the fluctuations of the 
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density around this shifted average show no pronounced dependence on D, 
and the equal-time autocorretation of the density changes only according 
to the increase in the average value: 

1 o) 2 m - - - ~  "t- O(O 5/2 ~2) (62) ((p2)) = ( p 2 ) _  ( p )  = ~  ( P )  32 

Another typical effect in the second order of the O-expansion is that 
there occur multiple decay constants in the time-dependent autocorrelation 
of the density. This effect does not change in order e ~, as is evident from the 
results of the previous section. So the only effect of the el correction on the 
density is accounted for by a renormalization of the rate constant for the 
process (lb):  

l m 
(t0) = -I" g ~--/~ -~- O(O 2 /;2) (63) 

where a = a ~~ + al l)O-1 + O(O--2). 

7. D I S C U S S I O N  OF T H E  C O R R E C T I O N  IN O R D E R  E 2 

The first sum in (32) has the same functional dependence on 2(0) as 
the first-order correction (31) and its effect is a similar renormalization of 
the rate constant for the recombination process. The rate constant is then 
defined up to second order in O 2, so 

a=a(O)+a(1)O lq..a]2)~,- 2 2+ ...  

where now 

(64) 

a120_2 ( m )  1 1 
= y,  ~ 4 D 2 k 2 k 2 d ( k , ) f l ( k l + k 2 ) d ( k 2 )  (65) 

" ~  kl~0 k2~0 

As in the first order, the convergence of the sums is ensured by the inverse 
squares of the summation indices, and for large systems the k values are so 
closely spaced on the scale on which A(k) varies that one can approximate 
A(k) by a ml rn/2L, so 

a~2)O - 2 = (a(~ 3Lzrn2 
144D 2 t- O(L)  (66) 

As a new feature in (32) there occur fourth-order derivatives with 
respect to 2(0) in the second sum and also a combination of jump rate 
constants for different processes in the third sum. Both are due to the 
embedded projection operator S in S R T  2FRSRSG.  
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The dependence of the second sum on 2(0) does not match the pattern 
(56), but it can be split uniquely into parts that do match: 

_ [1 _22 (0 ) ]  2 2 0~(0)[1 - 2(0)]  #~(o)SG 

2122(0) 2(0)]  4 [1 24(0)]  4 = - c3~(o)SG - _ ~?.~(olSG 

+4[9?2(0)_23(0)]  3 211 9?2(0)] (67) O ~(o)SG + - 02(o)SG 

So this part of the e 2 correction can be interpreted as four concurrent reac- 
tion processes, namely 

4 X ~  2 X +  2M' (68a) 

4X-* 4M' (68b) 

3 X ~  2 X +  M' (68c) 

2X --* 2M' (68d) 

These virtual processes appear to occur concurrently, independently from 
each other. Only the probability rates at which the events occur are related 
to the same parameter combination and they cannot be varied separately. 

The negative probability rate in the second term in (67) resembles the 
negative e ~ correction, but here there is no lower order process to be 
slowed down. As the f2-expansion shows, the major effect is a narrowing of 
the density fluctuations. The interpretation of the third sum is very similar 
to this. 

An estimate of the dominant effects in order e2 is provided by the Q- 
expansion of (32). To apply it, we make the Q-scaling explicit and translate 
back to the master equation in number space (3a). The first sum con- 
tributes only in order 0 .2 , but the second and the third sums contribute in 
order s ~ i.e., at the linear noise level. They are 

Ll-3 ~2 ~" _32 (2)  (2 N ) + A~(, ,)Aof2 (~_ - 1) (L 2 -  l) P ( N ,  t) 
n = 1 8D27c4n4 

L4 ~2 a(o) rh ff2-1(E2_ (2 N) 
+ ~ 2O2rc4n4..k(, ,)~ ~-~ . l)  (IF_ - l -  1 ) P ( N , I )  (69) n=l 

The factors N are of order f2 and every (~-v _ 1 ) operator contributes a fac- 
tor s - ,/2 

The result for the average density in the stationary state is 

(b) 1/2 m (~--4C)-]-O(ff2-2, g3 ) (70) <P5 = +2Z 



740 Burschka 

and the time-dependent autocorrelation is 

~ m ( - - ~ c ) e  2a'~ ( p ( O ) p ( t ) ) -  ( p ( O ) ) ~ = - ; p s =  1 

where 

-'~O(ff~--2, G 3 ) (71) 

L 4 L 4 
C= ~ Da/ iz4n4  d 2 ( n ) ~ , ~ - -  n : 1 90D2 a(~ 

Again for large system size we have substituted (a(~ 1/2 for dk/n) and we 
have used Y',~= 1 n -4 = 7z4/90. 

Evidently, the /~2 corrections have effects at the linear noise level of the 
f2-expansion, i.e., at leading order of ( p 2 ) _  ( p ) 2  in f2 -1/2, whereas the 
correction (31) contributes only one order higher in f2 -1/2. This is due to 
the final factor S R S  in the operator string working on SG in the second 
and third sums of (32). The operator S R S  is of order f21/2, as we know 
already from the s ~ contribution (28), and the order of the other operator 
part, which occurs to the left of it, is f2 1/2, similar to the g contribution 
(31). 

Inspection of the analogous term (27a) at general order n shows that it 
is of order f2/" 2)/2, because the part S R T - n F R S  is invarably of order 
f2 -1/2 for all n>~ 1. So from order e 3 on we expect changes in the 
hydrodynamic equation (order f21/2) and for still higher orders in e the 
limit f2 --. oo no longer exists. 

In the present form of the Q-expansion the limits e--* 0 and f2--. oo 
have to be taken so that el21/2 ~ 1. The physical regime where this restric- 
tion is met is best characterized in terms of the time scales of the problem: 

1. The diffusion time rD, namely the decay time of the slowest trans- 
port mode: 

rD = 4D IL2 ~ 81~Q 0 (72) 

2. The macroscopic reaction time rR, namely the decay time of the 
autocorrelation of the total number of reactants in a well-stirred 
system in the steady state: 

"c R = �89 1/2b-1/2 ~ ~0~0 (73) 

This time is half of the average lifetime of a particle in our 
example. 

3. The microscopic reaction time z'R, namely the average time 
between successive annihilation events in the stationary state: 

r'R = m/Lb ~ e~ -1 (74) 
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This is the time scale for the process that generates the 
correlations between the particle positions and that is sensitive to 
them. 

Our treatment requires 

~ ~ (~R ~;~) ~/2 (75) 

or else we would have to resum because the corrections to (2) become 
large. 

This result is more restrictive than the requirement that the average 
particle must have time to move through the whole volume of the system 
during its lifetime: ~o ~ ~R, which amounts only to ~ ,~ 1. 

8. H IGHER D I M E N S I O N S  

The generalization to d dimensions of the dynamical equation for the 
functional (10) and the Fourier transformation is a mere change in the 
dimension of the integrals and the normalization constants. In the correc- 
tion terms the sums over k values must be extended so that k assumes all 
values ((Tr/L)nl ..... (~/L)na), where nl ..... n d are integers. The scaling with f2 
changes only in that more generally ]-= (r~/ps) I/d, and all ii(k) remain of 
the same order f2 -1. 

The major difference for d > 1 is that the convergence of the sums over 
k can no longer rely on the factors k -2n from T -~, because the number of 
terms in a certain interval of Ikl values [IkJ, ]kj + A ]  is proportional to 
ikla 1. A sufficient condition for convergence, which is met by all 
physically reasonable models for A(k), is that 

~i(k)~O(Ikl  l-J)  for k ~ o o  

In the respective sums, the slow, long-ranged transport modes lose impor- 
tance in higher dimensions because they are relatively few. 

9. C O N C L U D I N G  R E M A R K S  

The main achievement of this paper is the systematic deduction of a 
reduced macroscopic description from the mesoscopic N-body level for a 
one-dimensional diffusion reaction system. The preexisting tools for this are 
the adiabatic elmination procedure, which goes back to Block's variant of 
degenerate perturbation theory, (13"~6) and van Kampen's f2-expansion. (2) 
Both were applied for the first time systematically to a diffusion reaction 
system in continuous space. In particular, we avoided any unsystematic cell 
mode! description with macroscopic, homogeneous cells. Our new form of 
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the O-expansion, namely the Avogadro scaling, applies also to the case of 
diffusion-controlled reactions, where the correlations between reactant 
positions are not small. 

The main conceptual result of this paper is the explicit restriction (75) 
under which (2) is a valid approximation. Contrary to modern 
textbooks, (2'8) this length is not the macroscopic "Kuramoto ''(5'17) length 
(zR/D) 1/2, namely the average distance that a reactant particle travels by 
diffusion during its lifetime. Rather, the semimicroscopic length 
~.1/4, r,1/411 1/2 R oR ~ is the upper limit. It goes to zero like f2 1/5 in the ther- 
modynamic limit, so that the average number of particles in the system in 
the steady state goes to infinity like f24/s. 

Our form of the adiabatic elmination resembles two other methods, 
namely the cluster expansion for diffusion reaction systems (4) and the 
Chapman-Enskog treatment of the linearized Boltzmann equation for 
fluids, which we discuss in turn. 

The various orders of the cluster expansion describe the correlations 
betwen clusters of reactants, i.e., the n-cluster term is of order (n - 1) in the 
reaction probability of encountering reactants. The cluster expansion 
retains the details of the two-particle interaction, but it also has two draw- 
backs in comparison with our method: (1) there is no exact explicit result 
available for three-particle and higher correlations; (2) for some reactions it 
is clearly not valid outside the steady state and for long times. (18) It is not 
apparent when it does fail and when not. Our adiabatic elimination avoids 
the details of the correlations between clusters of n particles, although this 
detail can be reconstructed easily from the solution for the time after the 
initial transient regime. The various orders describe the interaction between 
successive reaction events and even the higher orders are straightforward to 
compute. It is made to describe the long-time behavior. 

The Chapman-Enskog procedure has been shown to correspond for- 
mally to Bloch's variant of degenerate perturbation theory. (16) It has been 
applied previously ~6) to a cell model of the same chemical reactions as ours, 
and the results correspond to ours. On the physical side, however, the 
original Chapman-Enskog problem can be mapped to our problem in two 
different ways. As in our problem, Chapman-Enskog expand around a par- 
tial equilibrium which is attained because the collisions occur very fre- 
quently on the time scale of interest. However, in our problem there are 
two different sorts of collisions, namely collisions between reactants and the 
host medium particles and collisions between reactants. 

The dominant collisions in our problem are the ones with the host 
medium particles, which are described by the diffusion term. The reactant-  
reactant collisions constitute the slow process in our case, which is not 
related to the slow process in the fluid problem, namely free motion 
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between collisions. In this analogy, our virtual reaction paths correspond 
to the Burnett and "super"-Burnett terms/~6) found in the Chapman-  
Enskog problem. 

The other analogy concerns the hierarchy of correlation functions in 
both cases. C3"4~ Here the reactive collisions between reactants play a similar 
role to the collisions in the fluid case, because these are the mechanisms by 
which correlations between particles arise. The free diffusion of the reac- 
tions through the host medium then corresponds to the free motion of fluid 
molecules between collisions. In this respect, our adiabatic elimination is 
just the opposite of the Chapman Enskog problem, because we assume 
that the free diffusion occurs rapidly. Interestingly, there is a physical 
regime where the free motion in a fluid dominates over the collisions, 
namely if the probing wavelength is small compared to the mean free 
path. ~19) However, the adiabatic elimination in that case is more difficult, 
because the eigenvalues of the free streaming operator are purely imaginary 
and not large, real, and negative, as are those of the diffusion operator. 

There remain two main drawbacks of our treatment in comparison to 
a fuji1 real-space renormalization of diffusion reaction systems, t2~ which 
remains as an outstanding challenge: 

1. We have eliminated all transport modes at once and the length of 
our coarse-graining is the size of the system. 

For a selective elimination of fast transport modes with Ik] > tktcutorr, 
one can no longer expand in inverse powers of D. The expansion parameter 
is then the quotient of the absolutely largest eigenvalue of the reaction 
operator S R S  in the slow subspace and the decay constant Dkc2uton- of the 
slowest transport mode to be eliminated. The former eigenvalue is related 
to the fastest reaction process that is not eliminated. The lowest order of 
this modified scheme corresponds formally to the scheme in this article. 
However, the explicit computation of even the first-order correction 
requires the summation of the infinitely many terms of the form (27a), 
which proved most divergent in our secondary Q-expansion. Such a sum- 
mation would constitute the crucial reduction step of a renormalization. 

2. We have applied the s on top of the adiabatic 
elimination in the slow subspace only and not directly to the dynamic 
equation for the G functional on the N-body level. This would be the 
scaling step of a renormalization and would overcome the restriction 
e~21/2 ~ 1. 

We hope to come back to the mentioned shortcomings and extend our 
explicit results to higher dimensions in a future publication. 
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